TitleLabriform propulsion in fishes: Kinematics of flapping aquatic flight in the bird wrasse Gomphosus varius (Labridae)
Publication TypeJournal Article
Year of Publication1997
AuthorsWalker, JA, Westneat MW
JournalJOURNAL OF EXPERIMENTAL BIOLOGY
Volume200
Issue11
Pagination1549-1569
ISBN Number0022-0949
Abstract

Labriform, or pectoral fin, propulsion is the primary swimming mode for many fishes, even at high relative speeds. Although kinematic data are critical for evaluating hydrodynamic models of propulsion, these data are largely lacking for labriform swimmers, especially for species that employ an exclusively labriform mode across a broad range of speeds. We present data on pectoral fin locomotion in Gomphosus varius (Labridae), a tropical coral reef fish that uses a lift-based mechanism to fly under water at sustained speeds of 1-6 total body lengths s(-1) (TLs(-1)). Lateral- and dorsal-view video images of three fish swimming in a flow tank at 1-4 TLs(-1) were recorded at 60 Hz. From the two views, we reconstructed the three-dimensional motion of the center of mass, the fin tip and two fin chords for multiple fin beats of each fish at each of four speeds. In G. varius, the fin oscillates largely up and down: the stroke plane is tilted by approximately 20 degrees from the vertical. Both frequency and the area swept by the pectoral fins increase with swimming speed. Interestingly, there are individual differences in how this area increases. Relative to the fish, the fin tip in lateral view moves along the path of a thin, inclined figure-of-eight. Relative to a stationary observer, the fin tip traces a sawtooth pattern, but the teeth are recumbent (indicating net backwards movement) only at the slowest speeds. Distal fin chords pitch nose downward during the downstroke and nose upward during the upstroke. Hydrodynamic angles of attack are largely positive during the downstroke and negative during the upstroke. The geometry of the fin and incident how suggests that the fin is generating lift with large upward and small forward components during the downstroke. The negative incident angles during the upstroke suggest that the fin is generating largely thrust during the upstroke. In general, the large thrust is combined with a downward force during the upstroke, but the net backwards motion of the fin at slow speeds generates a small upward component during slow swimming. Both the alternating sign of the hydrodynamic angle of attack and the observed reduced frequencies suggest that unsteady effects are important in G. varius aquatic flight, especially at low speeds. This study provides a framework for the comparison of aquatic flight by fishes with aerial flight by birds, bats and insects.